第247章 普林斯顿的第一堂课(4/4)
“黎曼函数中的素数是用来乘的,而哥德巴赫猜想中的素数是用来加的!”
这种说法不够准确,但一定足够形象。
台下鸦雀无声。
看着那一双双被说服的眼睛,陆舟知道已经差不多可以开始收尾了,便用娓娓道来的声音,为自己的报告会做了一个总结。
“有些概念性的东西,不是一句体系就能绕开的。整个数学都笼罩在皮亚诺公理的体系之下,但不是所有问题都像皮亚诺公理一样是显而易见的。尤其是当你真正了解它,你会发现明明是11,但11和112说的其实是完全不同的东西。明明都是素数问题,甚至都涉及到“分布”,但两者八竿子打不着边。”
“至于说到我自己,绝对谈不上什么伟大。我不过是站在了无数巨人的肩膀上,才看到了现在的风景。陈老先生对大筛法的贡献自不必提,在伯克利分校和陶教授的讨论也对我受益匪浅,赫尔夫戈特的论文更是为我打开了新世界的大门,他们都是历史的功臣,虽然被历史记住的可能只有一个名字。但他们的工作,不是短短3小时就能概括的,因此,我也衷心地感谢他们。”
“虽然完成这篇论文只用了两个月的时间,但具体的工作从很久很久以前就开始了。”
美国的国情和华国不一样,民粹问题的根源在于高高在上的白宫和华尔街从来不会把一个对普通人过于困难的东西,用他们能听懂的声音说出来。
至于化解这个问题方法,其实也很简单。
说人话就行了。
如果今天他在白板上写的公式超过了三行,明天纽约时报等其他更具影响力的媒体,肯定是另一种画风。
不过现在,他觉得自己至少说服了一部分人。
有时候陆舟发现,自己也并非对政治一窍不通,实验主义和理科思维教给他的东西,别说人心了,甚至连系统没有说明的判定逻辑,他都能加以抽丝剥茧。
或许等到他到了十级之后,系统在他面前便不存在秘密了吧。
他相信,他会看到那一天。
陆舟在心中感慨了一声,轻轻放下了粉笔。
当他放下粉笔的那一刹那。
台下已经是掌声一片
重复前人的工作虽然很有意思,但这么做有什么意义吗?如果是一个学生这么做了,大概会被教授用赞许的目光看着,值得鼓励。但如果一个教授或者说学者这么做了,大概会被同行用关爱的眼神看着。
“黎曼猜想是个很重要的东西,也许未来克雷研究所会给伊诺克博士一个他期望的答复,但这和我没什么关系。我仅以通俗的语言,阐述了黎曼猜想和哥德巴赫猜想之间的关系。”
但也正是在这样的循环中,文明得以前进。
会不会有人把车倒着开,将一个已经和r撇清关系的东西,重新联系上?
陆舟笑了笑,继续说道:“如果这还不够通俗,我还能说的更通俗点。”
台下的听众们会心一笑。
“而这,就是你们要的干货。”
这样一来,确实好理解了许多。
说到这里,陆舟停顿了片刻,笑着继续说道:“至于为什么说哥德巴赫猜想没有黎曼猜想重要,因为对于大多数人来说,素数就是用来乘的!与此同时,这两个命题并不等价,甚至完全不在一个体系。这不是我的一面之词,哪怕你不懂r和r的区别,你也应该清楚,维诺格拉多夫在证明三素数定理时究竟干了些什么。”
当结论1、2、3n出来了之后,大家一看,咦?发明的工具和建立的理论已经能把r给证了,于是挑战这一命题的人开始变多,克雷研究所大概也会把r的悬赏换成r。
是的,被抽象的历史就是充满了套路。
第247章 普林斯顿的第一堂课(4/4) (第3/3页)
会考虑去证一个比结论1更弱的结论,在不假设r成立的条件下,独自成立。
虽然不是什么高深的东西,但他尽可能地用通俗易懂的语言,把自己知道的东西都讲出来了。
虽然,这些话拉尔特先生大概并不爱听。
陆舟并没有猜错。
他甚至已经注意到,站在讲台旁边的拉尔特双目冒火,攥紧的拳头白得发青,气急败坏的表情。
但,这并不能改变什么。
阅读学霸的黑科技系统最新章节 请关注无双小说网(www.buxia.org)