第16章 解析几何与笛卡尔坐标系
同样,通过法术配方中所记录的星子走向,便可反推出每枚星子的坐标。
高德起身,从一旁的置物架取出一支炭笔,直接在法术配方的空白处上开始记录。
“前进二分一,右进三分二,下进二分一......”
第三枚星子是以第二枚星子为起点进行移动,不能直接对比原点进行记录,可也不是啥大问题——不就是简单的向量加法运算嘛。
通过运算,即可得出第三枚星子的坐标为(2,3/2,-1/4)。
就这么依次推算下去。
很快,高德就将酸液飞溅的法术模型拆解成一个xyz坐标轴以及包括原点在的九个向量坐标。
第一个数代表沿着x轴走多远,正数代表向右移动,负数代表向左移动。
第二个数代表在此之后沿着平行y轴的方向走多远。
再用一个有序的三元数组确定法术模型每个节点的位置。
三元数组由三个数组成,这三个数负责指导如何从原点(向量起点)出发到达它的尖端(向量终点)。
第三个数代表沿着z轴方向走多远。
第一枚星子为原点,坐标记为(0,0,0)
第二枚星子的坐标记为(4/3,1,1/4)。
“前进一,右进一又三分一,上进四分一.......”
左右为x轴,前后为y轴,上下为z轴。
不过这也好办,将第一枚星子所在的位置视为原点就行了。
以原点为中心,建立一个最经典的xyz坐标系
第16章 解析几何与笛卡尔坐标系 (第3/3页)
以法术模型其中的一个星子作为原点,又会出现两个法术模型节点重叠或者星轨交叉干扰的情况。
而后,高德眼神灼灼地看着纸上的九个三元数组,开始尝试将之记忆下来。
显然,九个三元数组可比法术配方那繁杂的叙述简单多了,更别说高德天生对数字的敏感性就极高。
仅仅是几分钟的时间,他就将这九个坐标牢记于心。
“试试看。”
既然前期工作已经做好,高德说干就干,当即开始尝试。
阅读法师之上!最新章节 请关注无双小说网(www.buxia.org)